Package | Description |
---|---|
ambit2.groupcontribution.fragmentation | |
ambit2.groupcontribution.utils.math |
Modifier and Type | Method and Description |
---|---|
static MatrixDouble |
Fragmentation.generateCorrectionFactorMatrix(DataSet dataset,
GroupContributionModel gcm) |
static MatrixDouble |
Fragmentation.generateFragmentationMatrix(DataSet dataset,
GroupContributionModel gcm) |
static MatrixDouble |
Fragmentation.generateMultiplePropertyMatrix(DataSet dataset,
List<String> properties) |
static MatrixDouble |
Fragmentation.generateMultiplePropertyMatrix2(DataSet dataset,
List<DescriptorInfo> diList) |
static MatrixDouble |
Fragmentation.generatePropertyMatrix(DataSet dataset,
String property) |
Modifier and Type | Method and Description |
---|---|
static MatrixDouble |
ApplicabilityDomain.calculateHMatrixUsingInvC(MatrixDouble invC,
MatrixDouble At) |
MatrixDouble |
MatrixDouble.inverse(double eps) |
MatrixDouble |
MatrixDouble.makeMatrixFromRows(int[] rowIndices) |
static MatrixDouble[] |
CrossValidation.makeValidationModelMatrices(int[] testObjIndices,
MatrixDouble A,
MatrixDouble b,
MatrixDouble D) |
static MatrixDouble[] |
CrossValidation.makeValidationTestMatrices(int[] testObjIndices,
MatrixDouble A,
MatrixDouble b,
MatrixDouble D) |
static MatrixDouble |
MathUtilities.Multiply(MatrixDouble m1,
MatrixDouble m2) |
MatrixDouble |
MatrixDouble.transposed() |
Modifier and Type | Method and Description |
---|---|
static MatrixDouble |
ApplicabilityDomain.calculateHMatrixUsingInvC(MatrixDouble invC,
MatrixDouble At) |
static double |
MathUtilities.columnsScProd(MatrixDouble m1,
int col1,
MatrixDouble m2,
int col2) |
void |
MatrixDouble.copyColumnFrom(int destColumn,
MatrixDouble sourceMatr,
int sourceColumn) |
void |
MatrixDouble.copyRowFrom(int destRow,
MatrixDouble sourceMatr,
int sourceRow) |
static double |
Statistics.corrleationCoefficient(MatrixDouble m1,
MatrixDouble m2) |
static double |
Statistics.getConcordanceCorrelationCoefficient(MatrixDouble m1,
MatrixDouble m2) |
static double |
Statistics.getF(MatrixDouble y,
MatrixDouble y_model,
int p) |
static double |
Statistics.getQ2F1(MatrixDouble y,
MatrixDouble y_model,
double y_training_mean) |
static double |
Statistics.getQ2F2(MatrixDouble y,
MatrixDouble y_model) |
static double |
Statistics.getQ2F3(MatrixDouble y,
MatrixDouble y_model,
MatrixDouble y_training) |
static double |
Statistics.getR2(MatrixDouble y,
MatrixDouble y_model) |
static double |
Statistics.getRSS(MatrixDouble m1,
MatrixDouble m2) |
static double |
Statistics.getTSS(MatrixDouble m1,
double meanValue) |
static MatrixDouble[] |
CrossValidation.makeValidationModelMatrices(int[] testObjIndices,
MatrixDouble A,
MatrixDouble b,
MatrixDouble D) |
static MatrixDouble[] |
CrossValidation.makeValidationTestMatrices(int[] testObjIndices,
MatrixDouble A,
MatrixDouble b,
MatrixDouble D) |
static double |
Statistics.mean(MatrixDouble m) |
static double |
Statistics.meanAbsoluteError(MatrixDouble m1,
MatrixDouble m2) |
static MatrixDouble |
MathUtilities.Multiply(MatrixDouble m1,
MatrixDouble m2) |
void |
MatrixDouble.paste(MatrixDouble m) |
static double |
Statistics.rmsError(MatrixDouble m1,
MatrixDouble m2) |
static double |
Statistics.standardError(MatrixDouble m1,
MatrixDouble m2,
int p) |
Constructor and Description |
---|
MatrixDouble(MatrixDouble m) |
Copyright © 2004–2020 Ideaconsult Ltd.. All rights reserved.